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ABSTRACT

Loglinear models are adapted for the analysis of multivariate social networks, a set of

sociometric relations among a group of actors. Models that focus on the similarities and
0

differences between the relations and models that concentrate on individual actors are discussed.

This approach allows for the partitioning of the actors into blocks or subgroups. Some ideas

for combining these models are described, and the various models and computational methods

are applied to the analysis of data for a corporate interlock network of the 25 largest

organizations in Minneapolis/St. Paul and for a classic network of eighteen monks in a A

cloister.

Key Words: Loglinear model; Directed graph; Social network; Sociometric data; Iterative
proportional fitting; GLIM model.
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1. INTRODUCTION

Sociometric relations are typically defined for a set of social actors. A social network is a

construct describing these actors and the various relations that exist among them. As used in

the social sciences, actors have been individuals in groups, organizations, cities, or even nation

states; relations have ranged from kinship to friendship to transfers of scarce resources to

corporate board of directors interlocks.

Moreno (1934) was the first social scientist to study individual networks in a systematic

manner, and was apparently the first network researcher to use mathematics. Much of his

terminology, including such phrases as "sociogram," sociomatrix," and "sociometric test," is still

in use today. Festinger (1949) and Katz (1947, 1953, 1955) developed Moreno's ideas, focussing

4" on matrix representations of sociometric data, the popularity of actors, mutuality of

relationships in social groups, and even the representation of interpersonal relations as a

* stochastic process (see Katz and Proctor, 1959). Formal graph theory, as reviewed in this

paper in Section 2, was introduced to social network research by Cartwright and Harary (1958),

in an attempt to quantify the social psychological theories of Heider (1958).

Sip-e these pioneering efforts, sociologists, social psychologists, and social anthropologists have

repeatedly used the social network paradigm. Davis and Leinhardt (see Davis, 1970) scanned

the "sociometry" literature and found nearly 900 examples of social networks from diverse

small groups. Since 1970, social network analysis has grown rapidly in popularity. Leinhardt

(1977) presents a collection of twenty-four previously published papers which provide an

historical perpsective on social network analysis, and a collection of papers in a volume edited

by Holland and Leinhardt (1979) summarizes the state-of-the-art as of about 1975. Burt

(1980) discusses more recent sociological developments, Wasserman (1978) reviews alternative

mathematical models for small group behavior, and Frank (1981) summarizes some of the

. statistical theory on random graphs. Almost none of this research on the analysis of social

networks has appeared in statistical journals, with the exception of some of the work by Katz

1.
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and Wasserman (1980). There are just a few papers with substantial statistical content.

In a landmark statistical paper for network analysis, Holland and Leinhardt (1981) proposed

an exponential family of probability distributions for the analysis of a single sociometric

relation. Fienberg and Wasserman (1981a) discussed simple computational procedures for fitting

these models, and proposed some extensions to model networks in which the actors fall into

natural subgroups. These distributions include parameters that relate characteristics of

individual actors (eg., popularity) to differential rates for entering into or severing sociometric

relations. In Fienberg, Meyer, and Wasserman (1981), we described a related class of models

for multiple relations, extending Holland and Leinlardt's family to more than one relation by

focussing on the associations among the relations rather than on influences of individual actors.

Here we bring these two types of analyses together, and present some "combined models" for

the analysis of multivariate directed graphs. These models incorporate actor and subgroup

parameters, and quantities to measure the degree of interrelatedness of the different relations.

Methods to study a multivariate directed graph which focus solely on the relations and

ignore individual social actors are forms of mecroenalysis. Data for such analyses consist of

aggregate counts of the different structural patterns which occur within the network. The

methods for studying local structure in a network by using the triad census (Holland and

Leinhardt, 1975; Wasserman, 1977) can be labelled macroanalytic. Alternatively, we could study

the attributes of the actors, and how these attributes affect the existing ties between them.

Such a study is a mlcroanalysis, and promises a more fine-pained investigation.

Both the macroanalysis and microanalysis approaches have substantive value. A macroanalysis

of a group centers on the global structure of its relations, asking questions such as: Which

relation exhibits the strongest "reciprocity," or is most likely to have symmetric flows? Are

there any "multiplex" patterns, flows of different relations in the same direction? Are there

any patterns of "exchange," in which a flow in one direction for one relation is reciprocated
bby a flow in the opposite direction for a different relation? Are there any higher order -
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interactions, involving three or more flows for two or more relations?

A microanalysis of a group is a local study, turning attention to the level at which data are

actually gathered. Most microanalyses have been limited to groups with data on just a single

relation. The primary concern of such studies is the individual group member: Which actors

have the most prestige or popularity? Which actors are involved in many relations, which in

few? Do actors enter into mutual, symmetric relationships at different rates? Such questions,

while concerned with individual actor effects, are often answered by examining dyadic or

triadic relationships.

As an example, we consider the now classic study of 18 monks in an isolated American

monastery, conducted by Sampson (1969) and partially analyzed by Holland and Leinhardt

-4 (1981), Breiger (1981), and many others. Sampson studies four types of relations: Affect,

Esteem, Influence, and Sanction. Actors were asked to give three positive choices - e.g.,

which three brothers do you like best (positive affect) - and three negative choices - e.g.,

which three brothers are you most antagonistic towards (negative affect) - for each of the

four types. In this way, data were gathered on eight relations: (1) Like and (2) Antagonism

(Affect), (3) Esteem and (4) Disesteem, (5) Influence and (6) Negative Influence, and (7) Praise

and (8) Blame (Sanction).

We define

41, if actor i chooses actor j on relation r
0 1 = , otherwise

i,j = 1,2,....18; r = 2 .... 8

and arrange these data into 8 binary sociomatrices, X = ....,x each of dimensions 18 X

18. Versions of these arrays are given in Table 1, where the rows and columns have been

permuted to reflect constructed subgroupinp of the actors. Since the l's, 2's and 3's in Table

-4 1 refer to order of choices, we set all non-zero entries equal to 1 to obtain binary

sociomatrices.

... .-
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Holland and Leinhardt (1981) used the "Like" relation to illustrate their new methods. Other

researchers (White, Boorman, and Breiger, 1976: Brieger, Boorman, and Arabie, 1975) have

studied all the relations, but in a non-statistical attempt to aggregate the 18 monks in a

substantively meaningful manner. In later sections of this paper, we analyze a version of the

network which aggregates over positive and negative affects, searching for both macro- and

micro-models that provide good statistical descriptions of the relationships among the actors.

Most sociometric research, both empirical and mathematical, is preoccupied with overly

simplistic descriptions of group structure. This is very apparent in Burt's (1980) review. The

goal of this paper is to build upon the ideas of Holland and Leinhardt to develop models for

the simultaneous macro- and micro-analysis of multiple relational networks. These models aid

in the formulation and testing of theories concerning group dynamics. In the next section we

review Holland and Leinhardt's model and our extensions of it, and then in Section 3 we

illustrate these ideas in an analysis of a 1976 corporate interlock network from the Twin Cities

(Minneapolis/St. Paul). We emphasize the many substantive findings that can be obtained

from this form of statistical modelling. In Section 4, we present several models for the

analysis of data from multivariate directed graphs, and conclude by demonstrating these ideas

on Sampson's network.

I

I

I
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2. BACKGROUND: MODELS FOR SINGLE RELATIONAL DATA

A directed graph, or digraph, consists of a set of g nodes, and sets of directed arcs or

"choices" connecting pairs of nodes. Digraphs are natural mathematical representations of

social networks, where the nodes represent individuals, organizations or other social actors, and

the arcs represent relations. directed attitudes, feelings, or transfers, such as friendship. A

digraph is frequently summarized by g X g socioniatrices, 4,. one for each of the R defined

relations. The g diagonal terms of each sociomatrix, X.1 , are defined to be zero.

First consider a digraph with a single relation. R = 1. The row total X, is referred to as

the out-degree of node i and the corresponding column total X., as the in-degree of node

L A matrix x can be thought of as the realization of a matrix of random variables, . where

we assume that the ()pairs or dyads,

Dij -(XI.Xji). i < j,

are independent bivariate random variables, with 22 = 4 possible realizations, only 3 of which

are dblng i-a~

(1,1) mutual

D = (1,0) or (0.1) asymmetric

(0,0) null.

A multivariate directed graph, or multigraph, is described by a collection of random

uociomatrices X f . and we assume that the ( ) dyads,

Xij2'Xji2

nrj = , i j, p

are independent 2R-variate random variables with 22' possible realizations. For both digraphs -

"- - .... . +' - "- . .. .b s J . . - -' + + - S
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and multigraphs, the assumption that the dyads are independent random variables is a crucial

one, and is not subject to examination by the framework developed in this paper.

Holland and Leinhardt (1981) introduced a class of models, labelled p1 . to model micro-

behavior in a social group, on which only one relation has been defined. We now describe

these models, and explain how their analysis can be accomplished by using standard

computational approaches to the analysis of loglinear models for categorical data. We then

outline some extensions of these models that allow for grouping of individual actors. Further

details can be found in Fienberg and Wasserman (1981a). In Section 4 we extend this

approach to the analysis of multigraph data.

Consider a network of g nodes and a single relation, and represent the sociomatrix X as a

four-dimensional g X g X 2 X 2 cross-classification Y = (Y ), where the subscripts i and j
.4v ijky

refer to the two actors in a dyad, and k and t refer to the dyad state:

1, if D.. = (X..,X..) = (k,t)
Y = I (2.1)O, Otherwise.

For example, Y - 1 if D.. is a mutual dyad. Note that the 2 x 2 tables Y (i~j) contain

one 1 and three O's. Furthermore, Yijkt = YJi ' and the marginal totals of these 2 X 2 tables

.respond to indicator variables for X.j and XJ.. Because each margin is either (0,1) or (1,0),

the interior of the table is completely determined by its marginal totals.

We denote a realization of Y by X = (y ), and let j be the probability of the

observation (k,t) for the dyad (i,j), where

o if = 1, (2.2)
k,t

and we define p ijk= log ik" The Holland-Leinhardt p class of models is as follows:

I
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ijoo ij

o + =X +a
luipo j Bj+ 0,(2.3)

X +a +a +B + +20+p,
where 1 j I

g g
I a =I B j 0. (2.4)

i=1 j=1

and pi p. The sufficient statistics for the parameters of p, are easily expressed as margins

of X:

y , = M. Number of mutuals,

yj + = x , Out-degree of node i. (2.5)

Y+ji = X+j In-degree of node j, S

Y++,+ = x++, Total number of choices.

Through the use of the full X array, and its redundancies, one can show that fitting pt to

the x array is equivalent to fitting the "no three-factor" interaction loglinear model to ,. A

proof of this equivalence is given in Meyer (1981). Thus we can fit p, to data by using the

standard iterative proportional fitting procedure (IPFP) applied to X. Furthermore, the special

cases of p. listed in Table 1 of Holland and Leinhardt (1981), all have equivalent loglinear

models for X, and thus can also be fit using the standard IPFP. The equivalent models are

given in Table 2 of Fienberg and Wasserman (1981a).

An important generalization of p, starts with the equations (2.3) with constraints (2.4) and

further postulates that

Pj 9P+ j i < j (2.6) _.

where the {I p are normalized to sum to zero. The effect of reciprocity now depends

additively on the individual actors in a dyad, and the (p } measure the rates at which actors

are likely to enter into mutual, symmetric relationships. This model provides an important
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goodness-of-fit test for p1 (see Fienberg and Wasserman, 1981b) since it contains p, as a

* special case, when p1 = P2 = = P = 0.

We now describe a variant on p, for single relational sociometric data that assumes that the

g actors have been partitioned into K subgroups. Of substantive interest is how likely it is

that actors in one subgroup have relations with actors in othoa o subgroups, and how structurally

similar are actors in a given subgroup. We label the subgroups GIG2".'*...0  where the

partition of actors is mutually exclusive and exhaustive, and assume that subgroup Gk contains

actors, such that g + g, + ... + g = g. For example, White, Boorman and Brieger (1976)

(see also, Breiger, 1981) aggregate the 18 monks from Sampson's cloister into 3 "blocks" or

subgroups, containing g, = 7, g, = 7, g3 = 4 actors. This aggregation is reflected in Table 1,

where the rows and columns of the X matrices have been rearranged so that the first 7 rows~
and columns refer to actors in G, and so forth. Brieger, Boorman, and Arabie (1975)

construct a slightly different partition. We note that these partitions, called "blockmodels,"

were accomplished by grouping together all actors that are "structurally equivalent," relating to

the other actors in the group in identical fashion (see Lorrain and White, 1971).

We modify equations (2.3) by introducing inter- and intra-subgroup choice and reciprocity

parameters:

1 0o = X US)

io = AS) + oft)i f G and j e G (2.7)

ijOI = X US) + e(sr) r s

Pip I = 
X (US) + 0(US) + 8(sr) + pUS)

The parameters f (fs) are choice effects, and the (p ")}, reciprocity effects. The parameters

{X(")) are included to insure that the y ijk sum to 1 for each dyad. One special case of the

subgroup model (2.7) sets p(") = 0 for all r and s. Holland and Leinhardt (1981) note that, if

we further define

fr" = P{X = li G G and j 0 0), (2.8)
Ij
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then, in this special case,

0 US= log - logit (WUs)). (2.9)
1 - Us

A second special case of (2.7) is also a special case of p, in which we have a simple

additive model for 811s. All actors in subgroup 0 have a common a, a (r), and a common /,

We set

10%' )  8 + a € ) +  " (2.10)

p = ,o.

This model is equivalent to p, if K = g, and is a simplification, in the sense that we reduce

the number of a's (and 8's) from g-1 to K-1.

For details about these and other generalizations and specializations of p1' and for comments

on fitting these subgroup models to single relational data, see Fienberg and Wasserman (1981a).

In Section 4 we give a multivariate generalization of this model.

I

b

S"
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3. ANALYSIS OF A SINGLE RELATION IN A CORPORATE NETWORK

To illustrate these models, and to present some additional methods, we consider 1976 data on

a network of the twenty-five largest publicly-owned corporations headquartered in the Twin

Cities of Minneapolis and St. Paul. A firm is included in the network if it is among Fortune

magazine's 500 largest industrials, 50 largest commercial banks, 50 largest life insurance

companies, 50 largest financial companies, 50 largest retailers, 50 largest transportation

companies, and 50 largest utilities. These companies are listed in Table 2, along with their

ranks and location.

A preliminary analysis and thorough discussion of this network is given by Galaskiewicz and

Wasserman (1981). An arc (or a "corporate interlock") exists from firm i to firm j if an

officer of firm j is on the corporate board of directors of firm i. An interesting feature of

this network is the exclusion of dyadic interactions in which the two firms of the dyad have

the same Standard Industrial Code. These "competitive" dyads have been excluded because of

SEC anti-trust regulations that prevent interlocks between firms in the same industry. There

are 27 of these "structurally zero" dyads.

A variety of models was fitted to two versions of this network. One version included all 25

firms, and the other included only 20 firms, excluding four firms that do not interact with the

others (have zero in-degrees and out-degrees) - American Hoist and Derrick, IDS, Gamble-

Skogmo, and North Central Airlines - and a firm, Land O'Lakes, which is a cooperative, and

hence not strictly publicly owned. The calculation of degrees of freedom (df) is tricky because

of the structural zeros and the zero in-degrees and out-degrees. In general we follow an

approach similar to that suggested by Bishop, Fienberg, and Holland (1975, pp. 115-116).
I Below, we report likelihood ratio (0;) statistics and degrees of freedom for just 2 models.
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Fortune Rank
Manufacturers (1976) City

Minnesota Mining & Manufacuring (3M) 56 St. Paul
Honeywell 67 Minneapolis
General Mills 84 Minneapolis
Control Data 170 Minneapolis
Pillsbury 173 Minneapolis
Land O'Lakes 180 Minneapolis
International Multifoods 233 Minneapolis
Bemis 318 Minneapolis
Peavy 361 Minneapolis
Heorner-Waldorf 382 St. Paul
American Hoist and Derrick 434 St. Paul
Economics Laboratory 500 St. Paul

Commerical Banks
Northwest Bankcorporation 18 Minneapolis
First Bank System 20 Minneapolis

Life Insurance Companies
Minnesota Mutual Life Insurance 41 St. Paul
Northwestern National Life Insurance 42 Minneapolis

Diversified Financial Companies
St. Paul Companies 20 St. Paul
Investors Diversified Services (IDS) 28 Minneapolis

Retailing Companies
Dayton Hudson 20 Minneapolis
Gamble-Skogmo 22 Minneapolis

Transportation Companies
Burlington Northern R.R. 10 St. Paul
Northwest Orient Airlines 18 St. Paul
North Central Airlines 48 Minneapolis
Soo Line R.F. 49 Minneapolis

Utilities
Northern States Power 28 Minneapolis

Table 2. Twin Cities Corporate Network

.S=

S

S
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g=25 =20

model G2 df G2 df

SpIO.p, a,(j$}l 186.69 192 182.89 176

8(p = a = 8. = 0) 324.66 545 276.46 341

As can be seen, the very simple model with a single parameter provides %n adequate

description of both versions. This implies that the actors in neither version exhibit differential

productivity or attractiveness, and that there is no tendency toward reciprocity. We conclude

that the elements in X are independent identically-distributed Bernoulli random variables with p

= PXj = 1) and log odds ratio e = log (p/(l-p). Maximum likelihood estimates (MLEs) of

, are -2.49 (g = 25) and -2.01 (g = 20). This yields p = 0.0906 (g = 25) and p = 0.1553

(g = 20).
4

We now discuss some additional and new methods for the analysis of single relational data.

We first describe tests for the adequacy of partitions of actors into subgroups, and then show

how to estimate main effects for and interactions betweep the discrete variables used to

partition the actors. These ideas, along with the methods described in Holland and Leinhardt

(1981) and Fienberg and Wasserman (1981a), should provide a more complete "package" for

single relational data. We intend the remainder of this section to fill the existing gaps in this

methodology, and will use the 1976 Twin Cities corporate network simply for illustrative

purposes.

* Suppose we have two possible mutually exclusive and exhaustive partitions of a set of g

actors, (G= IO, 0 2, ..., G.) and H = (HI, H2 .... HL}, such that K < L, and the G's are

unions of the H's. For example, let g = 6. and define G, = (1,2,3), G2 = 14,5,6}, and H =

4 {1,2), H2 = (31, and H3 = (4,5,6); then, G =HI U H 2 and G2 = H . Thus, G is an

aggregation of H.

We consider whether or not to further aggregate the actors into K subgroups, assuming that

the actors are already partitioned into L subgroups i.e., can we combine some of the L
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esting subgroups to form K larger ones? Note that if L = g, then we ask whether or not

we should do any agregation at all We test

Ho : p, applied to K subgroups is appropriate
versiu

HA : pi applied to L subgroups is appropriate

The version of p1 applied to subgroups is given by equations (2.6) and (2.7). In terms of the

model parameters, there are L-1 each of the 8(" and A effects under H and K-i each
A

under Ho. The a's and /'s for the subgroups that are aggregated under Ho are equated.

Since H is a special case of H , if we assume that the model under H is correct, then the

conditional likelihood ratio statistic G2(HotHA) = G2(Ho) - G2(HA), with g(g-1) - 2K - [g(g-1)
A) ~ A)

- 2L] = 2(L-K) degrees of freedom can be used to test H° versus H . If L =g, then the

test statistic has 2(g - K) degrees of freedom.

For the 1976 Twin Cities corporate network, we focus on three partitions using the

information in Table 2:

G = {G = Mpls. firms,Gt = St. Paul firms)

G = (2 = Large firms, 02 " = Small firms}

H = 1H = Large Mpls. firms, H2 = Large St. Paul firms,

H~ = Small MPI firms, H = Small St. Paul firms)
3  i 4

"Size" of a. firm is determined by the Fortune ratings: "large" firms rank among the larger 250

(or 25). The 25x25x2x2 y array, aggregated to a 4X4x2X2 array to reflect the H partition, is

given as Table 3. Note that both G and G2 are aggregations of H. S

The following hierarchy lists the three aggregations and gives the associated likelihood and

conditional likelihood ratio statistics for testing the significance of aggregations:

S

- ... ... . "I ll l l i l=llil l i l i l i i i l -- i i i -
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H1  H H3  H
2 3 4

-;'" HiLARGE HH SMAUL H

Minneapolis St. Paul Minneapolis St. Paul

L Minneapolis 54 7 31 0 53 5 35 2
A 7 8 4 3 4 1 1 0
R
SSt Paul 31 4 6 3 25 0 11 3

E 0 3 30 00 00

S Minneapolis 53 4 25 0 38 2 25 0
M 5 1 0 0 2 0 0 0
A
L St. Paul 35 1 11 0 25 0 8 1
L 2 0 3 0 0 0 1 0

* Table 3. 1976 Twin Cities Corporate Network Relations aggregated
into 4 subgroups based on Location and Size

Aggregation G2  df AG 2  Adf

p - no aggregation; 25 actors 186.69 192

H - aggregation by size & location; L=4 401.80 538 215.11 346

G- aggregation by location; K,=2 461.62 542 59.82 4

* - aggregation by size K =2 525.63 542 124.01 4

Note that G2(H I pI) = 401.80 - 181.54 = 220.26, is less than the corresponding difference in

df, 346, so that one could argue that aggregating the 25 actors into 4 subgroups is not

necessary. The statistic G2 (H) - X2 is clearly small, however, and simplicity of the H
535

aggregation is so desirable that it is. a very attractive model. Both statistics G2(G I ) = 59.82

and G2(G I h) = 124.01 yield p-values less than 10', so further aggregation is not advisable.
42

There is one substantial advantage in using aggregated versions of these models. Besides the

ease with which the maximum likelihood cell estimates can be computed (we need only a K X

K x 2 x 2 table, where K is usually quite a bit smaller than g), the standard A distributions
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are more appropriate as reference distributions for the resulting test statistics. This is because

the number of parameters (2K with the p1-subgroup model) is fixed and does not increase in

the limit. as g + oo. There are problems that arise in testing when using models with

parameters for each actor (see Haberman (1981)). Fortunately, these problems are attenuated

when actors are aggregated.

In the following section we generalize this approach to the case of multiple relations. 0

0

SO

S

S

S
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4. MODELS FOR MULTIPLE RELATION DATA

We now turn our attention to networks of actors on which several relations are defined.

We discuss three types of models: (1) Models with neither actor nor group parameters; (2)

models with only group parameters and (3) models with both actor and group parameters.

The first type is a family of models for the macroanalysis of the multiple relations that

ignores any differences between actors. These models are briefly described in Fienberg, Meyer

and Wasserman (1981), and were used implicitly by Galaskiewicz and Marsden (1978) to study

resource flows between organizations in a midwestern community.

A
The most useful models for multiple relations are those that include parameters to reflect

different choice tendencies of the actors, particularly when they have been partitioned into

groups. If each group is a singleton, then we have a different set of parameters for each

actor; however, in practice this is likely to be a very large number. Thus, the assumption of a

specific partition, chosen as a consequence of extra-relational information, allows us to

parsimoniously limit the number of parameters, and (as is the case with single relational data)

use standard A2 asymptotic distributions for testing.

The last type of model is a generalization of the family of models for multiple relational

data sets in which the actors have been partitioned into mutually exclusive and exhaustive

groups. The assumption that all actors in a specific group relate to actors in other groups and

to other actors in the same groups in identical ways may not always be the case. There may

be subtle individual differences among the actors in a subgroup. Thus, the third type of

models allows us to add individual actor parameters to study these differences to the second

type of models with just group parameters.

We conclude this paper by illustrating these models on Sampson's network of 18 monks, for

whict we have 4 positive relations and 4 negative relations, and three subgroups, empirically

determined by the use of clustering algorithms.

4

4
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4.1 Models for the Macroanalysis of Multiple Relations

In order to model the macro-aspects of multigraphs we need to develop a notation for the

22R possible realizations of the {D.. and a representation for the table of summary counts of

these realizations obtained by adding across dyads.. Since these models assume no individual

actor differences, the sufficient statistics for the model parameters are margins of this table.

Table 4 contains summaries of Sampson's data, shown in Table 1. in the form of two 2

tables of counts of pairs of monks, one for the four positive relations and the other for the
S

four negative relations. Within each table, each pair is counted twice, once from the

perspective of each member, yielding a total count of 2 X 2") 306. We refer to these

tables as w-arrays, with entries {wik . Here R = 4.
ii'ij'kk*U*'

There are other ways to arrange these summary counts in tabular form. One way eliminates

the cells which occur twice. In general, a 2 2R w-array contains 2R-'( 2R + 1) unique cells.

Among these, are 2R cells whose counts are duplicated; i.e., occur twice in w. If we eliminate

the doubling and duplication in the 8-dimensional w-arrays given in Table 4, we get two

arrangements of 136 cells, whose counts correctly total 153. In Table 5, we give one possible

arrangement of these 136 cells in a form resembling a four dimensional 3 X 3 x 3 X 3 cross-

classification, in which some of the 81 cells have more than 1 count. We denote the counts in

Table 5 by = (zb.: a,b,c,d = M,A,,,N) (the use of the subscripts A and A is described in

the caption to the table).

We wish to model p,. the probability that a randomly selected dyad would be assigned to

cell (a,b,c,d) of Table 5, where
S

p x1. (4.1)
all cells

0



21

Table 4

Sampson's Cloister Data Aggregated Over Actors

(a) the order of the variables is (like, esteem, influence, praise)
with the index on the first variable changing fastest.

180 6 6 2 6 2 1 0 6 1 2 0 0 0 0 0
4 1 0 0 3 8 0 1 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 3 0 8 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
2 1 0 0 2 13 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
3 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0 2 0 13 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

(b) the order of the variables is (antagonism, disesteem, neg influence, blamel
with the index in the first variable change fastest.

164 3 3 0 3 7 0 0 3 0 7 0 0 0 0 0
7 0 0 0 7 5 0 1 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 7 0 5 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 4
7 0 1 0 6 1 0 0 1 0 0 0 0 0 0 0
21 0 0 1 7 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
7 1 0 0 1 0 0 0 6 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 1 0 7 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 20 0 0 0 00 0 1 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

A

4
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Welo define if a~bc, and d are each equal to

e abcd (4.2)
log (p b/2), if one of ab~c, or d oquals; A

and we develop a class of linear models for the Ie I I which yields an af fine translation of a

class of Toglinear models for the (p~b.). The reasons for this approach are discussed by

Fienberg, Meyer, and Wasserman (1981); primarily, we introduce the factor of % for A cells to

make our models consistent with the univariate model of Holland and Leinhardt (1981).

The models for the Q a~d are linear in sets of parameters that reflect the various distinct

types of dyadic patterns. In Fienberg, Meyer, and Wasserman (1981) we considered R = 3

relations as displayed in Figure 1. The Q were modeled with up to 36 (one per cell in z)

parameters with hieiarchical structure reflecting 13 distinct types. When R = 2, there are only

7 distinct types and at most, 10 parameters are necessary. When R =4, there are 22 distinct

type and 81 parameters.

FIGURE 1 PArERNS OF FLOW DEPENDENCY IN DYADIC PAITERNS6
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(32(~ SINBL:CHOC o'ozT
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1'.- ~ (po) W (-e

3 (e (PoOI
(lI~~~~23 2213, (P e)1 (Nv (P e)) A I AIT SAU LT

RELAIO I KUTIN I2EATO

P2 13''PS 3) 11223S 113' 2
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Table 5

Nonredundant Arrangement of Cells for Positive Relations from Sampson's Data

(see Table 4a)

Praise

M A N

Influence Influence Influence

Like M A N M A N M A

M zMM z ~AM zM NM 7M MA zM AA z M AX zM NA zM MN z MrAft z

m EsteemD A zM6 MM z M6 AM z M6XM ZM 6 NM ZmMA z meAA z MA ZINA zM MN Z AN z M6 XN ZM
ZMM ZM6XA ZMP~j ZMeN..

ZMMM ZMNJ ZMNM Z 6 MA 2M6AA ZM6AX Z 6 NA ZM N zA Z ZM

M z z ZA ZA ZAUMA Z AYAA z AgA i AbINA zAM zAN zAN ZA
AUMMANAMAVXZAUNM z ANMI ZArA! ZAJXX ZANNX AM VNAI

z z z- z

z A8MM z AfAM Z AOXM z ANM ZAOMA AtjA Ad;AA ANA ZAMN ZA IAN AOA8 ZN ZA

A Esteem A AMZAA Z 8  AN

z A 8M ZA ZA z
AAMMz ZAAAM A-- A A NA ZAN ZAN z z1fMAA A8 AM AvN Z--j Z-j- ZjX ZjN A6N A6AN A;N A

N Z ABMM z ABAM z A8M z ASNM z ABMA z ATAA z A6;A Z ATNA z UNzAA 6NZ
z ABMX ZABA7A ZABU ZABNX AM ~N AA

N Esteem AM ZNgMM z Nbt z 8MZ N:M NzM N2A J2 NN LNdN g

NOM ZNq N,; Z67

N gM 2NA 6M zNM JA 8XzNN aN zNA
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The parameters in this 'amily of models are GLIM-like in structure (see Nelder and

Wedderburn. 1972). A parameter is included in the model if and only if the corresponding

effect (such as choice, conditional multiplexity, etc.) is present. The parameters are also b

hierarchical: if we set some parameters equal to zero, all related higher-order terms are also

zero.
b

To fit these models to multivariate networks, we apply the general results for fitting

loglinear models given in Haberman (1974) or Appendix II of Fienberg (1980). The minimal

sufficient statistics (MSS's) are linear combinations of the elements of the L array, with

coefficients of 0, 1, or 2. The fitted values of these elements are found by solving the

likelihood equations, which set the MSS's equal to their estimated expected values. We can

either use a version of generalized iterative proportional fitting due to Darroch and Ratcliff

(1972), or a "trick," given in Fienberg, Meyer, and Wasserman (1981), which relies on the

following two results:

Result 1: For the class of affine translations of hierarchical

loglinear models described above, each set of MSS's is

equivalent to a set of marginal totals for the 2 2R table

(i.e., the w-table) with doubled and duplicated counts.

Result 2: For each affir.2 translation of a loglinear model for the

z -table, there is a corresponding loglinear model for the

w-table, with equivalent estimated expected values,

once we take account of the duplication and doubling.

The estimated expected values for the elements of the w-array can be computed using the

standard IPFP and the estimates of the parameters calculated from the fitted values. We note

that the degrees of freedom for any model must be calculated using the model for the ,-

array, and values of goodness-of-fit statistics computed using the w-array, dividing by 2 to 6

adjust for the doubling and duplications.

• m - m I - - ' u mmlir W in m~, m nd m m mmm mw t' " "m
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4.2 Models for Both Microanalysis and Macroanalysis: Actor and Group Effects

We now consider models for multiple relations that allow the actors in the network to

engage in relations at possibly different rates, and include both actor and group effects. To

review, we suppose that the R sociometric relations defined for a group of g actors, are

binary, and the presence/absence of directed links between actors is recorded in the form of

R sociomatrices. As before, we concentrate on the dyadic relationships between the ( ) pairs

of actors i and j, represented by the 2R-variate D., with realization d.

Primarily to limit the number of parameters, we now assume that the actors have been

partitioned into K mutually exclusive and exhaustive subgroups, G, 2 ..... 0 K. In practice, it

is very useful to allow for the inherent differences in the actors in this manner. If there are

single actors that behave contrary to the group as a whole (or to the collection of subgroups),

then they can be placed into their own singleton subgroups. Thus, their individual differences

can still be modeled directly.

In this section we outline models which can include both actor and group effects. These

models contain all the previous models as special cases. The R sociomatrices are used to

construct a table of pseudo-counts, of size g X g X (2 X 2)R. From this multivariate version

of the y-array, we can aggregate (2 X 2 )R tables to form a K x K x (2 x 2)R table, whose

entries are the frequencies of the different dyadic relationship patterns between actors of a

group partitioned into K subgroups. As in the earlier cases it is most convenient to work with

4 the full gxg X (2X2)R data table but to describe models in terms of the unduplicated data

array. This approach also grants us a considerable degree of flexibility in fitting the models.

For many of the models it is possible to consider collapsed or aggregated versions of the data

K which would result in smaller data tables. We believe that the unification which is introduced

by always considering the full data table outweighs the occassional advantage of having a

smaller table.

4 We will begin our discussion by concentrating on the choice parameters in an R = 3 relation

4
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network. As a starting point we contemplate the model

los PRi = d..) = X, ii; + JR. 19riJ) Xij + XR. OJiX, ., for all i > j. (4.3) |
oi J J r.1 ijr f.1 r Jif

which includes different choice parameters for each pair of individuals. The parameters X"J

are normalizing constants and are required so as to meet the sampling constraints of the

problem.

Initially, we focus our attention on just the first relation. If we wished to consider a model

which asserted that the response depended only on the chooser we would allow 8(ij -I I

Similarly, dependence only on the chosen actor would lead to OW) = 0(j) . Obviously we could1 I

allow chooser and chosen actor effects (but excluding the interaction) by specifying "p =

0 + . Another version of this model would be to suppose that individual actors assert! 1

influence only through the groups to which they belong. In this case we could write Oij } -

O(Y(i)' for the choosing group i, 0( iW = 0 (yIj ) for the chosen group j. O"j) = 8(y ")) + OMV forI ) ! I 1 1

both, or even 0- , ) = 6 (7( i) ° (j )) to indicate group by group choice interactionL If we aggregateI I

over groups then these models are just "actor" models where the actors are the groups. In

summary we have just described four basic classes of models; those which involve parameters

(W(j)) for each pair of actors, those with individual parameters (W" and 8()) for actors and the

corresponding notions, 9(Y().Y) (Y) and {U( Y(")), 90YIJ)}, for groups. Thus some possible "choice- l

only" models for one relation are:

S

0

S
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log P(D d..) -1) 6 constant
s j a

2) Ow chooser

3) 8'J) chosen

4) 8(i) + 19j)  chooser and chosen

5) ti~j  interaction

6) IVY"" group chooser

7) 4 If (J" group chosen

8) 94yi)) + 8(y(p group chooser and chosen

9) 0( y w.(il group interaction.

It is possible to mix and match among these models to consider, for example, the model

19i+) + 9('j) ' + " which allows individual actor parameters and a group interaction. As

soon as we contemplate such models we need to note that there is a partial hierarchy to the

models listed above, which we represent in Figure 2.

Figure 2. Hierarchy Displaying Levels of Parameters in the Loglinear Models

Level 4 5
/ \

Level 3 4 9I I

Level 2 2 8 3\ I\ /

Level 1 6 7V
. Level 0 1

The diagram indicates that any parameter at level i implies all those parameters at levels less

than i. The modelling strategy we have outlined above can be used for other types of flows

(e.g. mutual, reciprocal) and multiple relationships. In these cases we need to be concerned

about the hierarchical structure between parameter types as well as within parameter types.

Io
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4.3 Fitting Models

If we restrict ourselves to actor parameters then we can fit the models described above using

the IPFP to adjust simple margins of the symmetric g X g X (2X2)' data array. When models

with group parameters are included it is still possible to use the IPFP but now a more general

notion of margin is needed.
I

Let us consider two relations and the model log P(Q, =  ,j) = + P ie. a choice

parameter on only the first relationship. The sufficient statistics for this model in the

symmetric data array are

[12] X for all i,j,
kLmn

[13] ' X jk*mn for all ik.
jtmn J

[24] 1 X for all j,t.
ikmn

Now consider the model )(0' + OY). For this model the sufficient summary is S

I X jktmn for all i,j,
ktmn -.

Y Jn iXjklm for d = I...G and for all k,i#Gd  jmn 
"jtm

S I- X for d - 1....G and for all t.
jfGd ikmn ijktm.

We extend the usual square bracket notation to this situation. Recall that [12] indicates that

for each value of i and j we should sum over all other dimensions in the table. We shall use

the notation [-1 -23 to indicate that for each G and G we should sum over all entries in the
d e

table. A simple example should help to explain the notation.
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Consider the following 3X3 table:

1 2 3

1 a b c

2 d e f

3 g h i

Let G1 = 1.2) and = (3). Then the Ell margin is the triple (a+b+c, d+e+f, g+h+i), the

[-I] margin is the pair (a~b+c+d+e+f, rh+i) and the [-1 -2] margin is the table

a+b+d+e c+f

S~h i

In effect we have collapsed over the groups. It is an easy application of the IPFP to fit

models which use this generalized notion of margin. We note. however, that most standard

packages, which contain an IPFP routine, cannot be cajoled into fitting such models without

some tinkering.

We now use the notation to show which models correspond to certain parametrizations for

R = 2. Table 6 lists some of the choice models, and a small selection of other possible models.

There are many possible models with many possible combinations of population, group, and

individual parameters.

4.4 An Example: Sampson's Data

In order to demonstrate the ubiquity and apparent complexity of these social network

models, we have taken a somewhat unusual (and bold) approach to the analysis of Sampson's

network of eighteen monks. We view the four positive attributes (like, esteem, influence, andI

praise) as realizations of a single positive affect process, and the four negative relations

(antagonism, disesteem, negative influence, and blame) in a similar manner. There is substantial

justification for this pooling. White, Boorman, and Breiger (1976) found that when the

eighteen actors are aggregated into three blocks, the concrete social structure of this network is
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Table 6. A Selection of Possible Models for R=2

Parameters Margins to be Fit

choice. 81 (12] [3] [42 simple choice

19() [12J 1132 (24]

C12] [14] [23]

9"l + ~~ 112] 113] (14) [23] (24]I I

19Yfi)) (12] (-13] (-24] i

9(yJ)) [12] (-14] (-23]

mutuality (12] [134] [234]

p22)(" [121 [-156 E-2.56]
22

p (YY (j)) E12] [-1 -2 34]

multiplex (12] [135] (246]
12

Oc p  (12] [-146] (-235]

' 1 (121 [-1 -2 35] (-1 -2 46]

reciprocity -(1) (12] [136] [245]1r2 0

p(()) (12] (-145] (-236]
12

P(Y(i).7()) (12] [-1 -2 36] (-1 -2 45]
12

etc. •

-.1

k 'i . - .: .. , . - . . - S
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much the same across the four pairs of positive/negative relations: "A top-esteemed block

(consisting of 7 actors) unambivalently positive toward itself, in conflict with ... a second, more

ambivalent block (also of 7 actors) to which is attached a block of lasers (of size 4). We

label these blocks or subgroups as

G M. 2,... 7), G = (8 9,..., 14), G = (15, 16, 17, 18)

We therefore aggregate over both sets of relations by summing the four sociomatrices for the

positive relations, and the four negative relations, to obtain one positive and one negative

relation matrix. These arrays, given in Table 7, have entries indicating the number of times

actor i chooses actor j, either on the positive or negative choices.

The techniques we have used to analyze 0-1 sociomatrices are directly applicable here.

Furthermore, with multiple observations on each actor, the asymptotic basis for the goodness-

of-fit statistics stands or firmer ground. In our analysis we have examined the 18 X 18 X

(2) x (2X2) (corresponding to actor x actor X positive X negative) version of this table and

have used the three groups given above.

A priori, some choices are unlikely to be reciprocated across relations, and we should find a

simple choice or group choice model to be an adequate summarization of the flows of

attitudes, both positive and negative, across and between these three, substantively different,

subgroup. A summary of some of the models that we fit to this network is given in Table 8.

The difference in goodness of fit between models 2 and 3 (which in a sense is a measure of

the impact of the grouping effect) is statistically significant at any reasonable level of

significance and is typical of the improvement resulting from the addition of simple grouping

parameters. Similarly the difference in 02 values for models 4 and 5 is also large but is less

than the difference in degrees of freedom. The small number of degrees of freedom for

models is caused by a large number of fitted zeros. Indeed, any model which includes even

an overall multiplex (8121 parameter induces at least 2142 fitted zeros out of the 18 X 18 X 4

X 4 = 5184 cells in the table, and the goodness of fit statistics are not dramatically improved
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Table 7

Sampson's aoister Data Aggrepted Over Relations

Aggregted positive

011010000000001000
002033000100000000
010020212100000000
013042000100000000 

310404000000000000 "
032020200010010000012342001000000000 

000000003310200000 .
010000140120100110 "
010000134000300000 

000000034304010000 -:
000000012430200000
000000030402040000 "

0000000104&4 400000 :
040003000000300001
000000004000004042

000000000300001303
000000001400000340

A0rgae neatv 0

000000000000000000"
000000000000000222
000000010000001133 .
000000100100401242
000000003440100000

000000002210110222
000000010120011222
000000000010000011
200001000200210202
000030100000003200
000042100000002132
000041000000003412
000440300000000320
000041000000001432
000300020400000111,.
000340000410000000 t
000330300000000000 '
200231200000000000

0

0o



33

Table 8

Summary of Fit of Several Models on Sampson's Data

Model Margins d.f. G2 X1

1. (,"j) [121 2295 2835 6252

2. X,0j) + e + 8 [12] [3] [4] E5] [6] 2291 1453 3392
3. Xi*!) + 9(7) + 6'( )) E12] [-13] [-143 [-15] [-16] 2271 1395 3350

I I

+ glyli)) + (y(p) [-23] (-24] [-253 [-26]
2 2

4. X,0j + + P(Yj)) [12] (-136] (-236] 2259 1368 3088
. -12 -12

12 12C-145] [-245]

5. (ij) + P'(Y').Y'i)) [12] (-1-236] (-1-245] (1800 1180 2158

by the inclusion of these parameters. We note the very large differences between the 02 and

X2 values in Table 8, which go in the opposite direction from that suggested by the argument

given in Larntz (1978). The only explanation we can offer is the presence of the large

proportion of observed zero ell&

It appears that model 4, which includes different reciprocity effects for each group, provides

a reasonable description of the data.

4 A more thorough analysis of the data for this network should include a detailed study of the

similarities of the four pairs of positive/negative relations, and should experiment with other,

more refined partitions of the actors, as suggested by Breiger, Boorman, and Arabic (1975).

We have just touched the surface of a rather large, and certainly rich, set of longitudinal data.

We have studied the monastery structure only at the midpoint of a 12-month period, during

which a crisis over theology occurred, and the group split up.

Ii
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5. CONCLUSION

In this paper, we have considered a variety of loglinear models for micro and macro analysis

of binary social network data, and we have demonstrated how these models can be treated in a

unified manner. The models we have considered describe important aspects of the data, and

we have had the good fortune to be able to take advantage of relatively easy estimation

methods for model fitting.

Unfortunately, large data sets and corresponding large models are almost axiomatic with the

type of data we have described here. Our modelling has been consciously and unconsciously

influenced by what it is possible for us to compute. The models with separate group effects

seem to be at the limits of the computational methodology we have presented. Other models

which could be considered interesting (e.g. additional relationships between the groups, akin to

ordered category models for contingency tables) have not been mentioned. This is not because

we find them uninteresting, but rather because the prospect of numerically fitting such models

is daunting.

We believe we have indicated how more general models could be formulated, and have

presented some of the techniques that are appropriate for fitting the models to actual data.

Further advances in methodology in this area are likely to be as dependent upon advances in

numerical algorithms or computer hardware, as they will be on new statistical ideas.
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